Factoring and decomposing a class of linear functional systems

نویسندگان

  • Thomas Cluzeau
  • Alban Quadrat
چکیده

Within a constructive homological algebra approach, we study the factorization and decomposition problems for a class of linear functional (determined, over-determined, under-determined) systems. Using the concept of Ore algebras of functional operators (e.g., ordinary/partial differential operators, shift operators, time-delay operators), we first concentrate on the computation of morphisms from a finitely presented left module M over an Ore algebra to another one M ′, whereM (resp.,M ′) is a module intrinsically associated with the linear functional system Ry = 0 (resp., R′ z = 0). These morphisms define applications sending solutions of the system R′ z = 0 to solutions of Ry = 0. We explicitly characterize the kernel, image, cokernel and coimage of a general morphism. We then show that the existence of a non-injective endomorphism of the module M is equivalent to the existence of a non-trivial factorization R = R2R1 of the system matrix R. The corresponding system can then be integrated “in cascade”. Under certain conditions, we also show that the system Ry = 0 is equivalent to a system R′ z = 0, where R′ is a block-triangular matrix of the same size as R. We show that the existence of idempotents of the endomorphism ring of the module M allows us to reduce the integration of the system Ry = 0 to the integration of two independent systems R1 y1 = 0 and R2 y2 = 0. Furthermore, we prove that, under certain conditions, idempotents provide decompositions of the system Ry = 0, i.e., they allow us to compute an equivalent system R′ z = 0, where R′ is a block-diagonal matrix of the same size as R. Applications of these results in mathematical physics and control theory are given. Finally, the different algorithms of the paper are implemented in a Maple package Morphisms based on the library OreModules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Stability of Linear Systems with Multiple Time Delays

In this paper, a class of linear systems with multiple time delays is studied. The problem of exponential stability of time-delay systems has been investigated by using Lyapunov functional method. We will convert the system of multiple time delays into a single time delay system and show that if the old system is stable then the new one is so. Then we investigate the stability of converted new ...

متن کامل

On the $c_{0}$-solvability of a class of infinite systems of functional-integral equations

  In this paper, an existence result for a class of infinite systems of functional-integral equations in the Banach sequence space $c_{0}$ is established via the well-known Schauder fixed-point theorem together with a criterion of compactness in the space $c_{0}$. Furthermore, we include some remarks to show the vastity of the class of infinite systems which can be covered by our result. The a...

متن کامل

Decomposing finite Abelian groups

This paper describes a quantum algorithm for efficiently decomposing finite Abelian groups. Such a decomposition is needed in order to apply the Abelian hidden subgroup algorithm. Such a decomposition (assuming the Generalized Riemann Hypothesis) also leads to an efficient algorithm for computing class numbers (known to be at least as difficult as factoring).

متن کامل

New Optimal Observer Design Based on State Prediction for a Class of Non-linear Systems Through Approximation

This paper deals with the optimal state observer of non-linear systems based on a new strategy. Despite the development of state prediction in linear systems, state prediction for non-linear systems is still challenging. In this paper, to obtain a future estimation of the system states, initially Taylor series expansion of states in their receding horizons was achieved to any specified order an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007